

STGW40NC60V

N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH™ IGBT

Table 1: General Features

TYPE	V _{CES}	V _{CE(sat)} (Max) @25°C	lc @100°C
STGW40NC60V	600 V	< 2.5 V	50 A

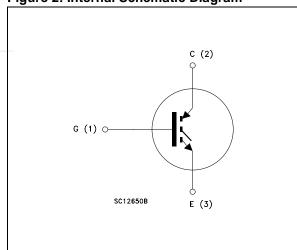
- HIGH CURRENT CAPABILITY
- HIGH FREQUENCY OPERATION UP TO 50 KHz
- LOSSES INCLUDE DIODE RECOVERY ENERGY
- OFF LOSSES INCLUDE TAIL CURRENT
- LOWER C_{RES} / C_{IES} RATIO
- NEW GENERATION PRODUCTS WITH TIGHTER PARAMETER DISTRUBUTION

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESH[™] IGBTs, with outstanding performances. The suffix "V" identifies a family optimized for high frequency.

APPLICATIONS

- HIGH FREQUENCY INVERTERS
- SMPS and PFC IN BOTH HARD SWITCH AND RESONANT TOPOLOGIES
- UPS
- MOTOR DRIVERS


Figure 1: Package

Weight: 4.41gr ± 0.01

Max Clip Pressure: 150 N/mm²

Figure 2: Internal Schematic Diagram

Table 2: Order Codes

SALES TYPE	MARKING	PACKAGE	PACKAGING
STGW40NC60V	GW40NC60V	TO-247	TUBE

July 2004 1/10

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Symbol	
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V	
V _{ECR}	Reverse Battery Protection	20	V	
V _{GE}	Gate-Emitter Voltage	± 20	V	
Ic	Collector Current (continuous) at 25°C (#)	80	Α	
Ic	Collector Current (continuous) at 100°C (#)	50	Α	
I _{CM} (1)	Collector Current (pulsed)	200	Α	
P _{TOT}	Total Dissipation at T _C = 25°C	260	W	
	Derating Factor	2.08	W/°C	
T _{stg}	Storage Temperature	- 55 to 150		
Tj	Operating Junction Temperature	- 55 to 150		

⁽¹⁾Pulse width limited by max. junction temperature.

Table 4: Thermal Data

		Min.	Тур.	Max.	Unit
Rthj-case	Thermal Resistance Junction-case			0.48	°C/W
Rthj-amb	Thermal Resistance Junction-ambient			50	°C/W
T _L	Maximum Lead Temperature for Soldering Purpose (1.6 mm from case, for 10 sec.)		300		°C

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 5: Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collectro-Emitter Breakdown Voltage	$I_C = 1 \text{ mA}, V_{GE} = 0$	600			V
I _{CES}	Collector-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = Max Rating Tc=25°C Tc=125°C			10 1	μA mA
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	V _{GE} = ± 20 V , V _{CE} = 0			± 100	nA

Table 6: On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GE(th)}	Gate Threshold Voltage	V _{CE} = V _{GE} , I _C = 250 μA	3.75		5.75	V
V _{CE(SAT)}	Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 40A, Tj= 25°C V _{GE} = 15 V, I _C = 40A, Tj= 125°C		1.9 1.7	2.5	V V

^(#) Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX} - T_{C}}{R_{THJ-C} \times V_{CESAT(MAX)}(T_{C}, I_{C})}$$

2/10

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{CE} = 15 V, I _C = 20 A		20		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{CE} = 25V, f = 1 \text{ MHz}, V_{GE} = 0$		4550 350 105		pF pF pF
$\begin{array}{c} Q_g \\ Q_{ge} \\ Q_{gc} \end{array}$	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	V _{CE} = 390 V, I _C = 40 A, V _{GE} = 15V, (see Figure 20)		214 30 96		nC nC nC
I _{CL}	Turn-Off SOA Minimum Current	$V_{clamp} = 480 \text{ V}, Tj = 150^{\circ}\text{C}$ $R_G = 100 \Omega, V_{GE} = 15 \text{V}$	200			Α

Table 8: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r (di/dt) _{on} Eon (2)	Turn-on Delay Time Current Rise Time Turn-on Current Slope Turn-on Switching Losses	$V_{CC}=390$ V, $I_{C}=40$ A $R_{G}=3.3\Omega$, $V_{GE}=15$ V, $T_{J}=25$ °C (see Figure 18)		43 17 2060 330	450	ns ns A/µs µJ
t _{d(on)} t _r (di/dt) _{on} Eon (2)	Turn-on Delay Time Current Rise Time Turn-on Current Slope Turn-on Switching Losses	$V_{CC} = 390 \text{ V, } I_{C} = 40 \text{ A}$ $R_{G} = 3.3\Omega, V_{GE} = 15\text{V, Tj} = 125^{\circ}\text{C}$ (see Figure 18)		42 19 1900 640		ns ns A/µs µJ

²⁾ Eon is the turn-on losses when a typical diode is used in the test circuit in figure 2. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs & DIODE are at the same temperature (25°C and 125°C)

Table 9: Switching Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_r(V_{off})$	Off Voltage Rise Time	$V_{CC} = 390 \text{ V}, I_{C} = 40 \text{ A},$		25		ns
t _d (off)	Turn-off Delay Time	$R_{GE} = 3.3 \Omega$, $V_{GE} = 15 V$ $T_{.1} = 25 °C$		140		ns
t _f	Current Fall Time	(see Figure 18)		45		ns
E _{off} (3)	Turn-off Switching Loss			720	970	μJ
E _{ts}	Total Switching Loss			1050	1420	μJ
$t_r(V_{off})$	Off Voltage Rise Time	$V_{cc} = 390 \text{ V}, I_C = 40 \text{ A},$		60		ns
$t_{d(off)}$	Turn-off Delay Time	$R_{GE} = 3.3 \Omega$, $V_{GE} = 15 V$ $T_{I} = 125 °C$		170		ns
t _f	Current Fall Time	(see Figure 18)		77		ns
E _{off} (3)	Turn-off Switching Loss			1400		μJ
E _{ts}	Total Switching Loss			2040		μJ

⁽³⁾Turn-off losses include also the tail of the collector current.

Figure 3: Output Characteristics

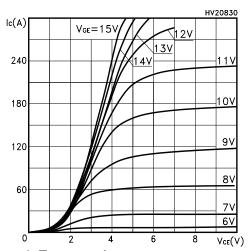


Figure 4: Transconductance

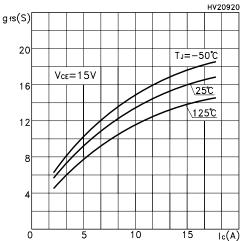


Figure 5: Collector-Emitter On Voltage vs Collector Current

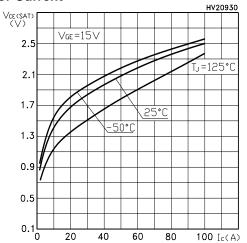


Figure 6: Transfer Characteristics

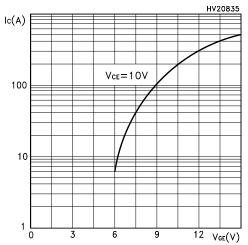


Figure 7: Collector-Emitter On Voltage vs Temperature

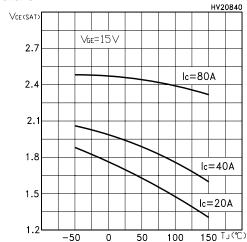
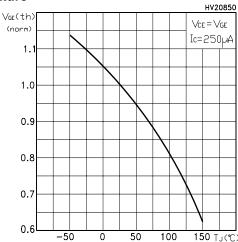



Figure 8: Normalized Gate Threshold vs Temperature

47/

Figure 9: Normalized Breakdown Voltage vs Temperature

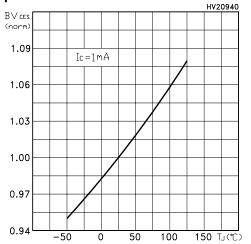


Figure 10: Capacitance Variations

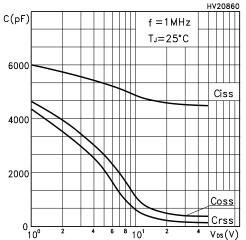


Figure 11: Total Switching Losses vs Gate Resistance

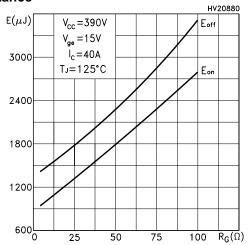


Figure 12: Gate Charge vs Gate-Emitter Voltage

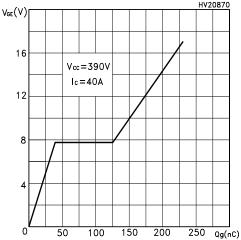


Figure 13: Total Switching Losses vs Temperature

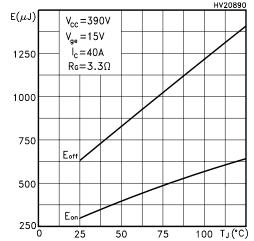


Figure 14: Total Switching Losses vs Collector Current

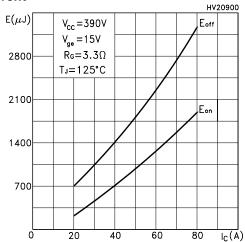


Figure 15: Thermal Impedance

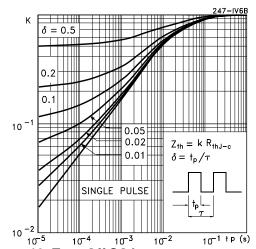


Figure 16: Turn-Off SOA

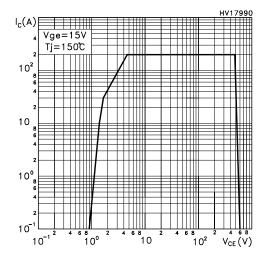
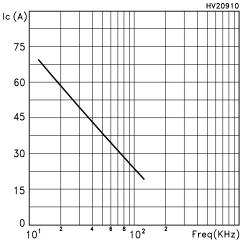



Figure 17: Ic vs Frequency

For a fast IGBT suitable for high frequency applications, the typical collector current vs. maximum operating frequency curve is reported. That frequency is defined as follows:

$$f_{MAX} = (P_D - P_C) / (E_{ON} + E_{OFF})$$

1) The maximum power dissipation is limited by maximum junction to case thermal resistance:

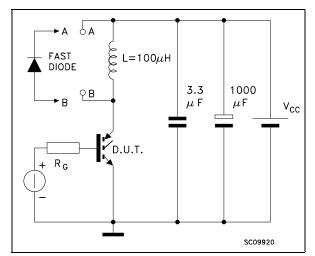
$$P_D = \Delta T / R_{THJ-C}$$

considering $\Delta T = T_J - T_C = 125 \,^{\circ}\text{C} - 75 \,^{\circ}\text{C} = 50 \,^{\circ}\text{C}$

2) The conduction losses are:

$$P_C = I_C * V_{CE(SAT)} * \delta$$

with 50% of duty cycle, V_{CESAT} typical value @125°C.


3) Power dissipation during ON & OFF commutations is due to the switching frequency:

$$P_{SW} = (E_{ON} + E_{OFF}) * freq.$$

4) Typical values @ 125° C for switching losses are used (test conditions: $V_{CE} = 390$ V, $V_{GE} = 15$ V, $R_{G} = 3.3$ Ohm). Furthermore, diode recovery energy is included in the E_{ON} (see note 2), while the tail of the collector current is included in the E_{OFF} measurements (see note 3).

47/.

Figure 18: Test Circuit for Inductive Load Switching

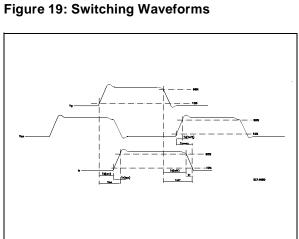
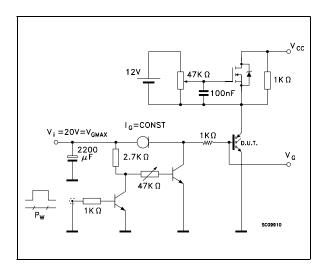
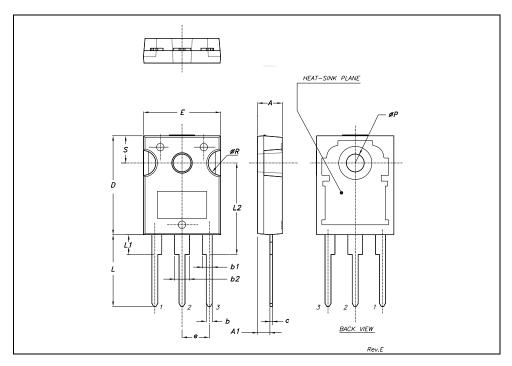




Figure 20: Gate Charge Test Circuit

TO-247 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
Е	15.45		15.75	0.608		0.620
е		5.45			0.214	
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14		0.17
L2		18.50			0.728	
øΡ	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

Table 10: Revision History

Date	Revision	Description of Changes
13-Jul-2004	9	Stylesheet update. No content change
14-Jul-2004	10	Some datas have been updated

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

/7/.